152 research outputs found

    Scalable big data systems: Architectures and optimizations

    Get PDF
    Big data analytics has become not just a popular buzzword but also a strategic direction in information technology for many enterprises and government organizations. Even though many new computing and storage systems have been developed for big data analytics, scalable big data processing has become more and more challenging as a result of the huge and rapidly growing size of real-world data. Dedicated to the development of architectures and optimization techniques for scaling big data processing systems, especially in the era of cloud computing, this dissertation makes three unique contributions. First, it introduces a suite of graph partitioning algorithms that can run much faster than existing data distribution methods and inherently scale to the growth of big data. The main idea of these approaches is to partition a big graph by preserving the core computational data structure as much as possible to maximize intra-server computation and minimize inter-server communication. In addition, it proposes a distributed iterative graph computation framework that effectively utilizes secondary storage to maximize access locality and speed up distributed iterative graph computations. The framework not only considerably reduces memory requirements for iterative graph algorithms but also significantly improves the performance of iterative graph computations. Last but not the least, it establishes a suite of optimization techniques for scalable spatial data processing along with three orthogonal dimensions: (i) scalable processing of spatial alarms for mobile users traveling on road networks, (ii) scalable location tagging for improving the quality of Twitter data analytics and prediction accuracy, and (iii) lightweight spatial indexing for enhancing the performance of big spatial data queries.Ph.D

    Anonymizing continuous queries with delay-tolerant mix-zones over road networks

    Get PDF
    This paper presents a delay-tolerant mix-zone framework for protecting the location privacy of mobile users against continuous query correlation attacks. First, we describe and analyze the continuous query correlation attacks (CQ-attacks) that perform query correlation based inference to break the anonymity of road network-aware mix-zones. We formally study the privacy strengths of the mix-zone anonymization under the CQ-attack model and argue that spatial cloaking or temporal cloaking over road network mix-zones is ineffective and susceptible to attacks that carry out inference by combining query correlation with timing correlation (CQ-timing attack) and transition correlation (CQ-transition attack) information. Next, we introduce three types of delay-tolerant road network mix-zones (i.e.; temporal, spatial and spatio-temporal) that are free from CQ-timing and CQ-transition attacks and in contrast to conventional mix-zones, perform a combination of both location mixing and identity mixing of spatially and temporally perturbed user locations to achieve stronger anonymity under the CQ-attack model. We show that by combining temporal and spatial delay-tolerant mix-zones, we can obtain the strongest anonymity for continuous queries while making acceptable tradeoff between anonymous query processing cost and temporal delay incurred in anonymous query processing. We evaluate the proposed techniques through extensive experiments conducted on realistic traces produced by GTMobiSim on different scales of geographic maps. Our experiments show that the proposed techniques offer high level of anonymity and attack resilience to continuous queries. © 2013 Springer Science+Business Media New York

    Security analysis and enhancements of an improved multi-factor biometric authentication scheme

    Get PDF
    Many remote user authentication schemes have been designed and developed to establish secure and authorized communication between a user and server over an insecure channel. By employing a secure remote user authentication scheme, a user and server can authenticate each other and utilize advanced services. In 2015, Cao and Ge demonstrated that An's scheme is also vulnerable to several attacks and does not provide user anonymity. They also proposed an improved multi-factor biometric authentication scheme. However, we review and cryptanalyze Cao and Ge's scheme and demonstrate that their scheme fails in correctness and providing user anonymity and is vulnerable to ID guessing attack and server masquerading attack. To overcome these drawbacks, we propose a security-improved authentication scheme that provides a dynamic ID mechanism and better security functionalities. Then, we show that our proposed scheme is secure against various attacks and prove the security of the proposed scheme using BAN Logic.111Ysciescopu

    RBC aggregation dynamics in autologous plasma and serum studied with double-channel optical tweezers

    Get PDF
    Red blood cells aggregating and disaggregating forces were measured in the autologous plasma and serum using the double-channeled optical tweezers. A significant, three-fold decrease of the both forces was observed in the serum compared to the plasma. The results of this study help to better assess the RBC aggregation mechanism

    Fast Iterative Graph Computation: A Path Centric Approach

    Full text link
    Abstract—Large scale graph processing represents an inter-esting challenge due to the lack of locality. This paper presents PathGraph for improving iterative graph computation on graphs with billions of edges. Our system design has three unique features: First, we model a large graph using a collection of tree-based partitions and use an path-centric computation rather than vertex-centric or edge-centric computation. Our parallel computation model significantly improves the memory and disk locality for performing iterative computation algorithms. Second, we design a compact storage that further maximize sequential access and minimize random access on storage media. Third, we implement the path-centric computation model by using a scatter/gather programming model, which parallels the iterative computation at partition tree level and performs sequential updates for vertices in each partition tree. The experimental results show that the path-centric approach outperforms vertex-centric and edge-centric systems on a number of graph algorithms for both in-memory and out-of-core graphs

    Noise Characteristics of the FORE+OSEM(DB) Reconstruction Method for the MiCES PET Scanner

    Full text link
    The FORE+OSEM(DB) image reconstruction method has been proposed for the fully-3D MiCES PET scanner under construction at the University of Washington. It is based on Fourier rebinning followed by 2D OSEM and an incorporated model of detector blurring (DB). As an extension, this paper presents the noise/resolution characteristics of this method. Multiple realizations were simulated to estimate the noise properties of the algorithm. The results are compared with OSEM followed by post reconstruction 3D Gaussian smoothing. The results show that the incorporation of detector blurring (OSEM(DB)) into the system matrix improves resolution compared to OSEM, while also inducing an increased variance at all radial locations. In addition, radially-varying noise characteristics are more apparent with OSEM(DB) than with OSEM.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85836/1/Fessler204.pd

    Effect of Red Blood Cell Aging In Vivo on Their Aggregation Properties In Vitro: Measurements with Laser Tweezers

    Get PDF
    Red blood cell (RBC) aggregation highly influences hemorheology and blood microcirculation in the human body. The aggregation properties of RBCs can vary due to numerous factors, including RBC age. The aim of this work was to estimate in vitro the differences in the RBC aggregation properties of different RBC age populations in single-cell experiments using laser tweezers. RBCs from five healthy volunteers were separated into four subpopulations by Percoll density gradient centrifugation. Each subpopulation of the RBC was separately resuspended in autologous plasma or dextran 70 kDa (50 mg/mL). The aggregation force between the single cells was measured with holographic laser tweezers. The obtained data demonstrated an enhancement of RBC aggregation force in doublets with age: the older the cells, the higher the aggregation force. The obtained data revealed the differences between the aggregation and aggregability of RBC in dependence of the RBC in vivo age

    Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions

    Get PDF
    Kinetics of optical tweezers (OT)-induced spontaneous aggregation and disaggregation of red blood cells (RBCs) were studied at the level of cell doublets to assess RBC interaction mechanics. Measurements were performed under in vitro conditions in plasma and fibrinogen and fibrinogen + albumin solutions. The RBC spontaneous aggregation kinetics was found to exhibit different behavior depending on the cell environment. In contrast, the RBC disaggregation kinetics was similar in all solutions qualitatively and quantitatively, demonstrating a significant contribution of the studied proteins to the process. The impact of the study on assessing RBC interaction mechanics and the protein contribution to the reversible RBC aggregation process is discussed
    corecore